

V1 2

All-in-one ESS Solution Raython Q33

Note: 1. Raython Q33 supports one additional cabinet of Energy Cube EX5 batteries (each cabinet up to 75kWh). 2. When two or more Raython Q33 are to be connected in parallel, an additional AC distribution cabinet is required for parallel operation.

For backup power application

Typical for scenarios with dual AC power supplies (grid and diesel generator) serving as a backup power system. In such cases, employing an Automatic Transfer Switch (ATS) is recommended, with the grid as the main input and the diesel generator as the backup. The ATS ensures continuous output availability when either AC input is active. When the grid is normal, it powers the loads; during a grid failure, the system seamlessly switches to the battery for power supply. Once generator startup conditions are met, it activates to supply power.

In the presence of AC coupling, solar self-consumption is attainable. PV energy takes precedence, powering loads initially, and any surplus energy is directed to battery charging.

Under any working conditions, if connected to the grid, the system will feed back excess energy into the grid.

For mini-grid application

Deployed in remote locations like border posts or small villages, the Raython Q33 ensures self-sufficient electricity, elevating living standards. The battery modules take the lead in powering loads. If the battery reaches a preset low SoC, the generator automatically starts to power loads and charge the battery.

If there exist AC coupling, PV energy will take the lead in powering loads, storing surplus energy in the battery. In case of insuffificient solar energy, the storage system takes over.

For ESS application

Designed for scenarios with accessible and stable grid, usually with a PV inverter involved to form an AC-coupled PV system. The primary objective is self-consumption, effectively reducing AC input instant power and long-term grid consumption to zero. Utilizing an energy meter connected to the grid side, users can real-time adjust the system's charging and discharging power. This ensures prioritized use of solar power to either energize loads or charge the battery. Any surplus energy permitted to be fed back to the grid is exported accordingly.

In the absence of AC coupling, the main goal is peak shaving. The grid charges the battery during off-peak hours, and the battery takes precedence in powering loads, effectively reducing electricity bills.

Model NO.

Raython Q33

System Specification

Nominal Output Power	33kW
Maximum AC Input Power	33kW
Battery Capacity Range	60kWh~75kWh (90% DoD)
Battery Chemistry	LiFePO4
IP Protection	IP20
Cabinet Dimension(W *D* H)	1300*700*2000
Warranty	5 years product warranty,10 years performance warranty

Inverter Technical Specification

Model	Qoma33H-R
Battery Voltage Range	400~850V
Max. Charging/ Discharging Current	62A

AC Side (Grid)

33kVA@45°C, 30kVA@50°C
50A
400V/230V, -20%~15%
50Hz: 47Hz~52Hz; 60Hz: 57Hz~62Hz
< 3 % (at nominal power)
-100%~100%

AC Side (Micro-Grid)

Nominal AC Voltage	400V/230V, -20%~15%
AC Voltage THD	< 1 % (Resistance Load)
Unbalance Load Capacity	100%
AC Output Power	45kW/30s

General

Maximum Charge Efficiency	0.98
Reverse Polarity Protection	Yes
Overvoltage Protection	DC Type II / AC Type III
Grid Monitoring /Ground Fault Monitoring	Yes/Yes
Insulation Monitoring	Yes
Overheat Protection	Yes
Degree of Protection	IP65
Operating Ambient Temperature Range	-25 to 60 ° (> 45 ° de-rating)
Allowable Relative Humidity Range (non- condensing)	0 –100 %
Cooling Method	Temperature controlled forced air cooling
Max. Operating Altitude	4000 m (> 3000 m de-rating)
Safety	IEC/EN62477-1, IEC/EN62040-1
EMC	EN61000-6-1/-2/-3/-4;
Grid Regulation	IEC62116, IEC61727, NRS097-2-1
Grid Support	LVRT, Active & Reactive Power control and power ramp rate control

Lithium Battery Technical Specification

EX5
5.04kWh
48VDC
+15 C ~+30 C
52.5A/105A
* IEC62619 / UN38.3
* EN61000-62/-4
12~15 EX5 in series

* Coming soon